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Summary-We have investigated the role of neuroendocrine and neurochemical changes in the 
age-related deterioration of cyclic female reproductive function. During middle age the timing and 
amplitude of the proestrous and estradiol-induced LH surge is altered. We have found that the diurnal 
pattern of norepinephrine turnover is altered in critical hypothalamic areas known to regulate the release 
of LHRH. These changes may contribute to alterations in the timing and the amplitude of LH release, 
which may, in turn, affect the ability of rats to maintain regular estrous cycles. 

INTRODUCTION 

The reproductive system has been used as a model 
system in gerontological research because of several 
reasons. First, there are several theories on the 
relative importance of extrinsic vs intrinsic factors in 
the aging process [ 11. The reproductive system is one 
which can be manipulated to assess the role of 
hormonal milieu (extrinsic) vs the genome (intrinsic) 
in the timing of age-related changes. Second, the 
reproductive system of females exhibits overt 

deterioration relatively early during the lifespan of 
the animal in several species (for review see Ref. [2]). 
Therefore, we can anticipate that alterations that we 
observe in reproductive function are likely to be 

related to changes in this particular axis. The obser- 
ved changes in the hypothalamus, pituitary gland 
and gonad during middle age are probably not 
secondary to generalized deterioration of the cir- 
culatory or nervous system. Third, in the female 
successful reproduction depends upon an exquisitely 
interactive and complex set of rhythmic events. 
Hence, this system provides the researcher with the 
opportunity to differentiate primary alterations in 
one component of the axis from secondary reper- 
cussions in other components of the axis. 

In most mammalian species, females reproduce 
during a limited period of time during their lives. 
Reproductive capacity is maintained from the time 
of sexual maturity through the first third of their 
lifespan. Thereafter, the frequency of normal births 
decreases and reproductive cycles cease well before 
the average lifespan is reached. The “perimeno- 
pausal” period is characterized by cycles of variable 
length. In humans. Korenman[3] reported that the 
length of each menstrual cycle during the peri- 
menopausal period may be variable due to changes 
in the length of the follicular phase of the cycle. In 
laboratory animals, estrous cycles of variable length 
have been documented in middle-aged rodents from 
the time they are 8-18 months of age[4,5]. In 
addition, during the middle-age period, there is 

decreased fertility and an increasing frequency of 
fetal mortality and abnormal young at birth [6-IO]. 

The goal of several laboratories has been to better 
understand the causes of the increasingly irregular 
cycles and ultimate total acyclicity and infertility. We 
have focused our attention upon the role of changing 
hypothalamic function in the transition to estrous 
acyclicity. 

Several studies suggest that hypothalamic func- 
tion is altered by the time that reproductive cycles no 
longer occur. First, estrous cyclicity can be rein- 
stated when old, acyclic constant estrous rats are 
treated with a variety of centrally acting phar- 
macological agents such as 1-dopa[lO-141, ler- 
gotrile mesylate [ 151, iproniazid [ 131, ether [ 121 or 
electrochemical stimulation of the hypo- 
thalamus [ 161. Second, aging rats are less respon- 
sive to the positive [17] and negative [18] feed- 

back effects of estradiol. Since estrogen’s effects on 
gonadotropin secretion are thought to be mediated 
predominantly by action at the hypothalamic 
level [ 19,201, the age-related changes in respon- 
siveness to steroid may be due to changes at the 
hypothalamic level. Third, in old rats, monoamine 
activity is altered in several brain areas, including 
key hypothalamic areas known to be involved 
in gonadotropin secretion [2 1,221. Finally. that 

changes at the level of the hypothalamus contribute 
to the onset of acyclicity is suggested by the studies of 
Aschheim [23] and Peng and Huang [24], who found 
that ovaries of old animals transplanted into young 
hosts were able to maintain ovulatory cycles. More 
recently. Felicio et a1.[2.5] reported that young 
ovarian grafts placed in aging mice were able to 
restore ovulatory cycles; however, the duration of 
this restorative effect was limited by progressive 

neuroendocrine dysfunction. These elegant data 
clearly demonstrate that both neuroendocrine and 
ovarian factors contribute to the age-related 
deterioration of the female reproductive system. 

We have focused our attention on the possible 
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Fig. 1A. Plasma LH (RP-1) concentrations in young and middle-aged rats on proestrus. Rats were bled 
from right atrial cannulae a maximum of 9 times during the day; all rats were bled at hourly intervals 

between 1400 and 1800 h. Values represent mean *SE. (From Ref. [26] with permission.) 

hypothalamic changes that occur in middle-aged rats 
that may contribute to the onset of irregular estrous 
cycles. We [26] and others [ 11,271 have reported 
that changes in the timing and the amplitude of 
preovulatory LH surges occur with age. We used 
young (3-4-month-old) and middle-aged (7-9- 
month-old) Sprague-Dawley rats. They were can- 

nulated via the external jugular vein to the level of 
the right atrium early on proestrous morning and 

then sequentially bled during the entire day. LH, 
FSH and prolactin levels were measured by 
radioimmunoassay. The data show that both LH and 
FSH rose later during the afternoon and peak con- 
centrations of both of these hormones were 
significantly lower in middle-aged rats compared to 
their young counterparts (Fig. 1). In contrast, the 
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timing and the amplitude of the preovulatory 
prolactin surge was not affected by age. 

Several hypothalamic factors could be altered on 
proestrus in middle-aged rats and contribute to the 
observed alteration in pattern of preovulatory 

gonadotropin release. We first considered the pos- 
sibility that plasma estradiol concentrations and/or 

hypothalamic or pituitary concentrations of estradiol 
receptors were altered and would therefore not allow 
estradiol positive feedback to occur normally. 

Groups of young and middle-aged proestrous 
rats were decapitated at 0900, 1200, 1.500 or 
1800 h and serum estradiol was measured by 
radioimmunoassay [28]. Estradiol concentrations 
were virtually the same in both age-groups and 
therefore inadequate estradiol cannot explain the 
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Fig. 1 B. Plasma FSH concentrations in young and middle-aged rats on proestrus. The same rats were 
used as shown in Fig. 1A. (From Ref. [26] with permission.) 
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0 YOUNG m MIDDLE-AGED preoptic area, medial basal hypothalamus and pitui- 
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Fig, 2. Serum estradiol (above) and progesterone (below) 
concentrations on proestrus in young (clear bars) and 
middle-aged (dark bars) rats. Columns represent mean f 

SE. (From Ref. [28] with permission.) 

delay and attenuation of the preovulatory LH (Fig. 2) 
surge observed in middle-aged rats. More recent 
evidence by Nass and colleagues[27] and Sopelak 
and Butcher [29] demonstrates that estradiol con- 
centrations are elevated for a longer period of time in 
middle-aged proestrous rats than in young rats. 
Together these data suggest that adequate levels of 
estradiol exist in circulation to allow normal positive 
feedback to occur. 

We next assessed estradiol receptor concen- 
trations in hypothalamic areas and the pituitary 
gland of middle-aged rats, since estradiol positive 
feedback depends upon normal estradiol receptor 
levels in these neuroendocrine target areas [30]. The 
dissociation constant and maximal estradiol nuclear 
receptor concentrations were determined in the 

results demonstrate that by middle age significant 
changes occurred in the maximal number of estradiol 
nuclear receptors in the preoptic area only. No 
change was observed in the medial basal hypo- 
thalamus, the amygdala or the pituitary gland (Table 
1). In older rats (16-18-month-old) a significant 
decline in the maximal number of estradiol nuclear 
receptors expanded anatomically to include the 
medial basal hypothalamus and the pituitary as well. 
That we observed the first significant decrease in 
maximal estradiol nuclear receptor number in the 
preoptic area is intriguing since this area of the brain 
is thought to be particularly important in the in- 
duction of preovulatory LH surges [ 19,331 and the 
maintenance of biological rhythms including re- 
productive cycles [34]. Thus, changes in function in 
this area of the brain may affect the ability of ag- 
ing females to maintain regular cyclic functions. 
Decreased estradiol uptake in the hypothalamus 
and pituitary[35] and decreased binding to 
cytoplasmic [36,37] and nuclear [38] estradiol re- 
ceptors in various areas of the brain and pituitary 
of non-cycling rats has been reported previously. In 
addition, age-related changes in other estradiol tar- 
get tissues have been documented in rats [39] and 
mice [40]. In a follow-up study we [41] determined 
whether (1) the changes we observed in the preoptic 
area of middle-aged rats were evident in selected 
specific areas of this brain region and (2) changes in 
estradiol receptor concentrations were detectable in 
other regions of the brain when a microdissection 
technique, which permitted finer separation of dis- 
crete brain areas, was utilized. Young (3-4-month- 
old) and middle-aged (1 O- 11 -month-old) cycling 
rats were ovariectomized for 1 week prior to sacrifice 
to allow maximal translocation of receptor into the 
cytoplasm. Eleven brain areas were microdissected 
and the pituitary gland was removed and analyzed 
for receptor content using the assay of Rainbow et 
a1.[42]. We observed significant changes in the 

Table 1. Effect of age on dissociation constant and maximal number estradiol nuclear receptors in 
various brain areas and the pituitary gland 

Dissociation constant 
( lo-r0 M) 

B tnax 

(fmol/mg DNA) 

Preoptic area 

Medial basal 
hypothalamus 
Amygdala 

Pituitary 

Young 1.01 450 
Middle-aged 0.81 358 

Young 1.42 363 
Middle-aged 0.89 282 

Young 0.81 260 
Middle-aged 0.98 266 

Young 2.92 1175 
Middle-aged 4.15 1124 
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suprachiasmatic-preoptic area and the medial 
preoptic nucleus, with a similar trend in other areas 
(Fig. 3) which comprise the “preoptic area” dis- 
sected in our previous study [3 11. The power of the 
more discrete dissection was most evident when 
analyzing the data from the several different brain 
areas which comprised the “medial basal hypo- 
thalamus” used previously. In the above study, a 
significant decrease in cytosol estrogen receptors 
was detected within the ventromedial nucleus (Fig. 
3), one component of the “medial basal hypo- 
thalamus”. No such change was detected with the 
gross dissection methodology [3 I], since the peri- 
ventricular-anterior hypothalamic area and dorso- 
medial nucleus exhibit no change and therefore 
obscured changes within the smaller ventromedial 
nucleus. These data support the hypothesis that 
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Fig. 3A-D. Cytoplasmic estradiol receptor concentrations 
in young (a_) and middle-aged (U ) ovariectomized 
rats. Microdissected brain areas in panel A were previously 
included in the grossly dissected “preoptic area”. Micro- 
dissected brain areas in panel B were previously included in 
the grossly dissected “medial basal hypothalamus”. The 
medial (MAmyg) and cortical (CAmyg) data in panel C 
were previously dissected as one piece of tissue. Bars 
represent mean f SE. (From Ref. [42] with permission.) 

changes at the receptor level may contribute to the 
changes in the ability of estradiol to induce LH 
surges observed in middle-aged rats. 

Considerable evidence suggests that catechol- 
amines, in particular norepinephrine, play an im- 
portant role in regulating the release of LHRH 
(for reviews see Kefs [33,43,44]). Thus, intraven- 
tricularly administered norepinephrine can trigger 
an ovulatory-like surge of LH [45]. Progesterone- 
induced LH surges can be blocked by diethyl- 
dithiocarbamate, an inhibitor of norepinerphrine 
synthesis [46]. Finally, norepinephrine turnover 
rates are elevated in specific hypothalamic nuclei 
during proestrous [47] and steroid-induced [48] LH 
surges. Conversely, norepinephrine turnover rates 
are low when preovulatory LH surges are 
blocked [49, SO]. This body of evidence strongly 
suggests that norepinephrine stimulates the release 
of preovulatory LHRH, directly or indirectly, and 
that this, in turn, stimulates the preovulatory surge of 
LH. Therefore we performed a series of studies to 
determine whether (1) the pattern of norepinephrine 
activity is altered during preovulatory and/or 
estradiol-induced LH surges and (2) the alterations 
are limited to specific hypothalamic areas. Pro- 
estrous young (3-Smonth-old) and middle-aged 
(8-lo-month-old) rats were killed at 0900, 1200 or 
1500 h; since the LH surge had been shown to be 
delayed in middle-aged rats, an additional group of 
middle-aged rats were killed at 1800 h. Other groups 
of young and middle-aged rats were treated with 
cr-methyl-paratyrosine at the above times, to block 
further synthesis of catecholamines, and were killed 
60 or 120min later. The brains were removed, 
frozen, sliced and microdissected according to 
the method of Palkovits[Sl]. We analyzed 
catecholamine activity in the medial preoptic 
nucleus, the suprachiasmatic nucleus, the median 
eminence and the arcuate nucleus [52]. The medial 
preoptic nucleus and the suprachiasmatic nucleus 
are two anterior hypothalamic areas that are thought 
to regulate the rhythmic biological functions; 
whereas the median eminence and the arcuate 
nucleus are areas of the medial basal hypothalamus 
generally thought to be involved with basal hormone 
release [33]. We found that in young proestrous rats, 
norepinephrine turnover rates increased during the 
day and peaked at 1500 h in all brain areas. The 
diurnal rhythm of activity was such that activity was 
high when the LH surge occurred and low during the 
morning when LH concentrations were basal (Fig. 
4). In contrast. in middle-aged rats norepinephrine 
turnover rates increased during the afternoon only in 
the medial basal hypothalamic nuclei (median 
eminence and arcuate nucleus) but exhibited no 
significant increase during the afternoon in the 
anterior hypothalamic areas (medial preoptic 
nucleus and suprachiasmatic nucleus). These results 
suggest that changes in the diurnal pattern of nore- 
pinephrine turnover rates are apparent during 
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Fig. 4. Norepinephrine turnover rates in the median 
eminence, arcuate nucleus, suprachiasmatic nucleus and 
medial preoptic nucleus of young (clear bars) and middle- 
aged (dark bars) rats on proestrus. (From Ref. [52] with 

permission.) 

middle age when the preovulatory LH surge is 
delayed and attenuated. Furthermore, the pattern is 
altered predominantly in the suprachiasmatic 
nucleus and the medial preoptic nucleus, two 
anterior hypothalamic areas known to regulate 
cyclic physioIogica1 events and in which we have 
observed changes in e&radio1 receptor concen- 
trations. Finally, norepinephrine turnover rates in 
middle-aged rats are not simply lower than in young 
rats. Instead, there is a relatively steady turnover rate 
during the entire day with no significant diurnal 
rhythm. It is possible that increased norepinephrine 
turnover rates in the medial basal hypothalamic 
nuclei are necessary for LH surges to occur and 
increased turnover in the anterior hypothalamic 
nuclei serve to modulate the timing and the am- 
plitude of the surge. Thus, the absence of a,diurnal 
rhythm of norepinephrine activity in the anterior 
h~thalamic areas of middle-aged proestrous rats 
may result in subtle changes in the profile of the 

proestrous LH surge that may contribute to the onset 
of irregular estrous cyclicity. 

We have reported that plasma estradiol concen- 
trations were not altered in middle-aged compared 
to young rats on proestrus [2X]. Therefore, we tested 
whether altered responsiveness to estradiol could 
explain the attenuated preovulatory LH surges that 
we previously observed in middle-aged rats on 
proestrus [26]. Young (3-4-months-old) and middle- 
aged (9-12-months-old) rats were ovariectomized. 
One week later, they received Silastic capsules con- 
taining estradiol- 17/3. Groups of young and middle- 
aged rats were sequentially bled through the in- 
dwelling right atria1 cannula throughout the day 1,2, 
3 or 4 days after the implantation of the estradiol 
capsule. We found that a maximal positive feedback 
response to estradiol was observed 2, 3 and 4 in 
young rats. In contrast, middle-aged rats required 
the presence of estradiol for at least 3 days before a 
maximal positive feedback response was achieved. 
Even at these times, the timing of the LH rise was 
delayed by 1 h and peak concentrations were lower 
in middle-aged rats [I 71. Since the diurnal pattern of 
catecholamine turnover was altered in middle-aged 
rats during the proestrous LH surge, we wondered 
whether an equivalent defect might explain the 
changes in the ability of estradiol to LH release in 
middle-aged rats. Young and middle-aged rats were 
treated with estradiol capsules as described above 
and catecholamine turnover rates were examined. 
On days 2 and 4, young and middle-aged rats were 
killed at 1000 or 1500 h or treated with cu-methyl- 
paratyrosine at those times and killed 45 or 90 min 
later. Brains were removed, frozen, sliced and 
microdissected. The medial preoptic nucleus, sup- 
rachiasmatic nucleus and median eminence were 
analyzed for catecholamine content. In young rats, 
norepinephrine turnover rates increased during the 
afternoon compared to the morning in all brain areas 
examined on both days (Fig. 5). In contrast, in 
middle-aged rats, no increase in norepinephrine 
turnover rates was observed during the afternoon of 
day 2. By day 4, the delayed and attenuated LH surge 
was accompanied by increased turnover rates in the 
median eminence only, no change occurred in the 
suprach~asmatic nucleus or medial preoptic nucleus. 
The alteration in the cate~holamine profile is 
remarkably similar to that which we observed in 
middle-aged proestrous rats. This suggests to us that 
age-related neurochemical changes influence both 
the proestrous and steroid-induced surge during 
middle age. We were able to detect these changes in 
the anterior hypothalamic areas only, suggesting that 
aging may affect this area of the hypothalamus 
initially. 

In summary, our data demonstrate that neuroen- 
docrine and neurochemical alterations are detect- 
able early during the aging process in female rats. 
Changes in the diurnal pattern of norepinephrine 
turnover may contribute to alterations in the timing 
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Fig. 5. Norepinephrine turnover rates in the median 
eminence, medial preoptic nucleus and suprachiasmatic 
nucleus of young (clear bars) and middle-aged (dark bars) 
rats on day 2 and day 4 after the administration of an 
estradiol-containing capsule. (From Ref. [17] with per- 

mission.) 

and the amplitude of LH release. We are presently 

testing the hypothesis that multiple diurnal neuro- 

chemical and neuroendocrine events, which are 

critical to cyclic LH release and which are regulated 

by the suprachiasmatic nucleus and the medial 

preoptic nucleus, deteriorate during middle age. 
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